Arxiv
- PACOL: Poisoning Attacks Against Continual Learners 
 H. Li and G. Ditzler 
 arXiv preprint arXiv:2311.10919, 2023. 
- Sleep Stage Classification with Learning from Evolving Datasets 
 H. Li, X. Chen, W. Killmore, S. Quan, G. Ditzler, P. Chang, J. Roveda, and A. Li
 techrxiv preprint techrxiv.23730546.v1, 2023. 
- A Maximum Log-Likelihood Method for Imbalanced Few-Shot Learning Tasks 
 S. Hess and G. Ditzler 
 arXiv preprint arXiv:2211.14668, 2022. 
- Edge-Guided Occlusion Fading Reduction for a Light-Weighted Self-Supervised Monocular Depth Estimation 
 K.-S. Peng, G. Ditzler, and J. Rozenblit 
 arXiv preprint arXiv:1911.11705, 2019. 
Journals
- Stealthy Adversarial Attacks on Machine Learning-Based Classifiers of Wireless Signals 
 W. Zhang, M. Krunz and G. Ditzler 
 IEEE Transactions on Machine Learning in Communications and Networking, vol. 2., pp. 261-279, 2024. 
- Knowledge Distillation Under Ideal Joint Classifier Assumption 
 H. Li, X. Chen, G. Ditzler, P. Chang, J. Roveda, and A. Li 
 Neural Networks, vol. 173, 2024. (arXiv:2304.11004) 
- ProtoShotXAI: Using Prototypical Few-Shot Architecture for Explainable AI 
 S. Hess and G. Ditzler 
 Journal of Machine Learning Research, 24(325):1−49, 2023. 
- DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and Noise Removal 
 H. Li, G. Ditzler, J. Roveda and A. Li 
 IEEE Journal of Biomedical and Health Informatics, 2023. (arXiv:2208.00542) 
- Ovarian Cancer Detection Using Optical Coherence Tomography and Convolutional Neural Networks 
 D. Schwartz, T. Sawyer, N. Thurston, J. Barton and G. Ditzler 
 Neural Computing and Applications, vol. 34, no. 11, pp. 8977-8987, 2022. 
- Attack Transferability Against Information-Theoretic Feature Selection 
 S. Gupta, R. Golota and G. Ditzler 
 IEEE Access, 2021, vol. 9, pp. 115885-115894. 
- Data Poisoning Against Information-Theoretic Feature Selection 
 H. Liu and G. Ditzler 
 Information Sciences, 2021, vol. 573, pp. 396-411. 
- A Convolutional Neural Network-enabled Pavement Roughness Assessment using Non-calibrated Vehicle Dynamic Responses 
 J.-H. Jeong, H. Jo, and G. Ditzler 
 Computer-Aided Civil and Infrastructure Engineering, 2020. 
- Learning What We Don’t Care About: Regularization with Sacrifical Functions 
 G. Ditzler, S. Miller, and J. Rozenblit 
 Information Sciences, 2019, vol. 496, pp. 198-211. 
- A Semi-Parallel Framework for Greedy Information-Theoretic Feature Selection 
 H. Liu and G. Ditzler 
 Information Sciences, 2019, vol. 492, pp. 13-28. 
- Approximate Kernel Reconstruction for Time-Varying Networks 
 G. Ditzler, N. Bouaynaya, R. Shterenberg, and H. M. Fathallah Shaykh 
 BMC BioData Mining, 2019, vol. 12, no. 9. 
- A Novelty Detector and Extreme Verification Latency Model for Nonstationary Environments
 R. Razavi-Far, E. Hallaji, M. Saif, and G. Ditzler 
 IEEE Transactions on Industrial Electronics, 2019, vol. 66, no. 1, pp. 561-570. 
- Weight normalization with spiking neural networks
 Z. Liang, D. Schwartz, G. Ditzler, and O. Ozan Koyluoglu
 Neural Networks, 2018, vol. 108, pp. 365-378. 
- AKRON: An Algorithm for Approximating Sparse Kernel Reconstruction
 G. Ditzler, N. Bouaynaya, and R. Shterenberg 
 Signal Processing, vol. 144, 2018, pp. 265-270. 
- Improvements to Scalable Online Feature Selection Using Bagging and Boosting
 G. Ditzler, J. LaBarck, J. Ritchie, G. Rosen, and R. Polikar
 IEEE Transactions on Neural Networks and Learning Systems, 2018. vol. 29, no. 9, pp. 4504-4509 
- A Sequential Learning Approach for Scaling up Filter-Based Feature Subset Selection
 G. Ditzler, R. Polikar, and G. Rosen
 IEEE Transactions on Neural Networks and Learning Systems, 2018, vol. 29, no. 6, pp. 2530-2544. 
- Fizzy: Feature selection for metagenomics
 G. Ditzler, J. Calvin Morrison, Y. Lan, and G. Rosen
 BMC Bioinformatics, 2015, vol 16, no. 358. 
- Multi-Layer and Recursive Neural Networks for Metagenomic Classification
 G. Ditzler, R. Polikar, and G. Rosen
 IEEE Transactions on Nanobioscience, 2015, vol. 14, no. 6, pp. 608-616. 
- Adaptive strategies for learning in nonstationary environments: a survey
 G. Ditzler, M. Roveri, C. Alippi, and R. Polikar
 IEEE Computational Intelligence Magazine, 2015, vol. 10, no. 4, pp. 12-25. 
- A bootstrap based Neyman-Pearson test for identifying variable importance
 G. Ditzler, R. Polikar, and G. Rosen
 IEEE Transactions on Neural Networks and Learning Systems, 2015, vol. 26, no. 4, pp. 880-886. 
- Incremental learning of concept drift from streaming imbalanced data
 G. Ditzler and R. Polikar
 IEEE Transactions on Knowledge & Data Engineering, 2013, vol. 25, no. 10, pp. 2283–2301. 
Conferences
- A Curriculum Learning Framework to Boost Object Detection on Unmanned Aerial Objects 
 E. Aslan, K. Naddeo, Taha Bouhsine, R. Polikar, and G. Ditzler 
 IEEE Symposium on Computational Intelligence in Security, Defence and Biometrics, 2025. 
- Boosting Aerial Object Detection Performance via Virtual Reality Data and Multi-Object Training 
 N. Koutsoubis, K. Naddeo, G. Williams, G. Lecakes, T. Kiel, G. Ditzler, and N. Bouaynaya 
 IEEE/INNS International Joint Conference on Neural Networks, 2023. (talk) 
- DyViR: Dynamic Virtual Reality Dataset for Aerial Threat Object Detection
 N. Koutsoubis, K. Naddeo, G. Williams, G. Lecakes, A. Almon, T. Kiel, G. Ditzler, and N. Bouaynaya 
 SPIE Defense + Commercial Sensing Meeting Information: Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications, 2023. (talk) 
- On Reducing Adversarial Vulnerability with Data Dependent Stochastic Resonance 
 D. Schwartz and G. Ditzler
 IEEE Symposium Series on Computational Intelligence, 2022. (talk) 
- Application of Adversarial Machine learning in Protocol and Modulation Misclassification 
 M. Krunz, W. Zhang, and G. Ditzler 
 Proceedings of the SPIE, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV, 2022. [talk] 
- Targeted Data Poisoning Attacks Against Continual Learning Neural Networks 
 H. Li and G. Ditzler 
 IEEE/INNS International Joint Conference on Neural Networks, 2022. 
- Inter-Architecture Portability of Artificial Neural Networks and Side Channel Attacks 
 M. Gopale, G. Ditzler, R. Lysecky and J. Roveda 
 Great Lakes Symposium on VLSI (GLSVLSI), 2022. 
- Intelligent Jamming of Deep Neural Network Based Signal Classification for Shared Spectrum 
 W. Zhang, M. Krunz, and G. Ditzler 
 Military Communications Conference (MILCOM), 2021. 
- Multi-Layer Mapping of Cyberspace for Intrusion Detection 
 S. Shao, P. Satam, S. Satam, K. AI-Awady, G. Ditzler, S. Hariri, and C. Tunc 
 ACS/IEEE International Conference on Computer Systems and Applications, 2021. 
- Adversarial Filters for Secure Modulation Classification 
 A. Berian, K. Staab, G. Ditzler, T. Bose, and R. Tandon
 Asilomar Conference on Signals, Systems and Computers, 2021. 
- Bolstering Adversarial Robustness with Latent Disparity Regularization 
 D. Schwartz and G. Ditzler
 IEEE/INNS International Joint Conference on Neural Networks, 2021. 
- OrderNet: Sorting High Dimensional Low Sample Data with Few-Shot Learning 
 S. Hess and G. Ditzler
 IEEE/INNS International Joint Conference on Neural Networks, 2021. (talk) 
- A Light-Weight Monocular Depth Estimation With Edge-Guided Occlusion Fading Reduction 
 K.-S. Peng, G. Ditzler, and J. Rozenblit
 International Symposium on Visual Computing, 2020. 
- Bypassing Temporal Dependency in Adversarial Audio Examples 
 H. Liu and G. Ditzler
 IEEE Symposium Series on Computational Intelligence, 2020. (talk) 
- Detecting Adversarial Audio via Activation Quantization Error 
 H. Liu and G. Ditzler 
 IEEE/INNS International Joint Conference on Neural Networks, 2020. (talk) 
- Self-Supervised Correlational Monocular Depth Estimation using ResVGG Network 
 K.S. Peng, G. Ditzler and J. Rozenblit
 International Conference on Intelligent Systems and Image Processing, 2019. 
- Poisoning mRMR with Adversarial Data 
 H. Liu and G. Ditzler 
 IEEE International Conference on Acoustics, Speech and Signal Processing, 2019. 
- Online Reconfigurable Antenna State Selection based on Thompson Sampling 
 T. Zhao, G. Ditzler, and M. Li 
 International Conference on Computing, Networking and Communications, 2019. 
- The Impact of an Adversary in a Language Model 
 Z. Liang and G. Ditzler 
 IEEE Symposium Series on Computational Intelligence, 2018. (talk) 
- Malicious HTML File Prediction: A Detection and Classification Perspective with Noisy Data 
 S. Hess, P. Satam, G. Ditzler and S. Hariri 
 ACS/IEEE International Conference on Computer Systems and Applications, 2018. 
- Nonlinear Brain Tumor Model Estimation with Long Short-Term Memory Neural Networks 
 J. Guo, Z. Liang, E. Scribner, G. Ditzler, N. Bouaynaya and H. Fathallah-Shaykh 
 IEEE/INNS International Joint Conference on Neural Networks, 2018. 
- Fine Tuning Lasso in an Adversarial Environment Against Gradient Attacks 
 G. Ditzler and A. Prater 
 IEEE Symposium Series on Computational Intelligence, 2017. (talk) 
- Speeding Up Joint Mutual Information Feature Selection with an Optimization Heuristic 
 H. Liu and G. Ditzler 
 IEEE Symposium Series on Computational Intelligence, 2017. 
- Framework to Support DDDAS Decision” Support Systems: Design Overview 
 G. Ditzler, A. Akoglu, and S. Hariri 
 Workshop on InfoSymbiotics: DDDAS Dynamic Data Driven Applications Systems, 2017. 
- A Self-Protection Agent using Error Correcting Output Codes to Secure Computers and Applications 
 F. de la Pena Montero, S. Hariri, and G. Ditzler 
 IEEE International Conference on Cloud and Autonomic Computing, 2017. 
- Autonomic Management of 3D Cardiac Simulations 
 E. Esmaili, A. Akoglu, G. Ditzler, S. Hariri, J. Szep and T. Moukabary 
 IEEE International Conference on Cloud and Autonomic Computing, 2017. (best paper award) 
- Fraud Analysis Approaches in the Age of Big Data - A Review of State of the Art 
 S. Makki, R. Haque, Y. Taher, Z. Assaghir, G. Ditzler, M.-S. Hacid and H. Zeineddine 
 International Workshop on Autonomic Systems for Big Data Analytics, 2017. 
- A Fast Information-theoretic Approximation of Joint Mutual Information Feature Selection 
 H. Liu and G. Ditzler 
 IEEE/INNS International Joint Conference on Neural Networks, 2017. 
- The AKRON-Kalman Filter for Tracking Time-Varying Networks 
 V. Carluccio, N. Bouaynaya, G. Ditzler, and H. M. Fathallah Shaykh 
 IEEE International Conference on Biomedical and Health Informatics, 2017. 
- A Study of Incremental Spectral Meta-Learning for Nonstationary Environments 
 G. Ditzler 
 IEEE/INNS International Joint Conference on Neural Networks, 2016. (talk) 
- Scaling a Neyman-Pearson subset selection approach via heuristics for mining massive data
 G. Ditzler, M. Austen, R, Polikar, and G. Rosen 
 IEEE Symposium on Computational Intelligence in Data Mining, 2014. (travel award) (talk) 
- Feature Subset Selection for Inferring Relative Importance of Taxonomy 
 G. Ditzler and G. Rosen 
 ACM International Workshop on Big Data in Life Sciences, 2014. (invited and travel award) 
- Domain Adaptation Bounds for Multiple Expert Systems Under Concept Drift 
 G. Ditzler, G. Rosen, and R. Polikar 
 IEEE/INNS International Joint Conference on Neural Networks, 2014. (travel award & best student paper) 
- Incremental learning of new classes with unbalanced data 
 G. Ditzler, G. Rosen, and R. Polikar 
 IEEE/INNS International Joint Conference on Neural Networks, 2013. 
- Discounted expert weighting for concept drift 
 G. Ditzler, G. Rosen and R. Polikar 
 IEEE International Symposium on Computational Intelligence in Dynamic and Uncertain Environments, 2013. (talk) 
- Information theoretic feature selection for high dimensional metagenomic data 
 G. Ditzler, R. Polikar, and G. Rosen 
 IEEE International Workshop on Genomic Signal Processing and Statistics, 2012. 
- A transductive learning algorithm for concept drift 
 G. Ditzler, G. Rosen and R. Polikar 
 IEEE/INNS International Joint Conference on Neural Networks, 2012. 
- Determining significance in metagenomics 
 G. Ditzler, R. Polikar and G. Rosen 
 IEEE North Eastern Biomedical Engineering Conference, 2012. 
- Forensic identification with environmental samples 
 G. Ditzler, R. Polikar, and G. Rosen 
 IEEE International Conference on Acoustic, Speech and Signal Processing, 2012. 
- Semi-supervised learning in nonstationary environments 
 G. Ditzler and R. Polikar 
 IEEE/INNS International Joint Conference on Neural Networks, 2011. (student travel award) 
- Hellinger distance based drift detection algorithm 
 G. Ditzler and R. Polikar 
 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments, 2011. 
- Fusion methods for boosting performance of speaker identification systems 
 G. Ditzler, J. Ethridge, R. Polikar, and R. Ramachandran 
 Asia Pacific Conference of Circuits and Systems, 2010. 
- An incremental learning algorithm for nonstationary environments and imbalanced data 
 G. Ditzler, R. Polikar, and N. V. Chawla 
 International Conference on Pattern Recognition, 2010. 
- Optimal \(\nu\)-SVM parameter estimation using multi-objective evolutionary algorithms 
 J. Ethridge, G. Ditzler, and R. Polikar 
 IEEE Congress on Evolutionary Computing, 2010. 
- An ensemble-based incremental learning framework for concept drift and class imbalance 
 G. Ditzler and R. Polikar 
 IEEE/INNS International Joint Conference on Neural Networks, 2010. 
- Incremental learning of new classes in unbalanced data: Learn++.UDNC 
 G. Ditzler, M. Muhlbaier, and R. Polikar 
 International Workshop on Multiple Classifier Systems, 2010. 
Book Chapters
- Analysis Methods for Shotgun Metagenomics 
 S. Woloszynek, Z. Zhao, G. Ditzler, J. R. Price, E. R. Reichenberger, Y. Lan, J. Chen, J. Earl, S. Keshani Langroodi, G. Ehrlich and G. Rosen 
 Springer Theoretical and Applied Aspects of Systems Biology, 2018, pp. 71–112. 
- Adaptive classifiers for nonstationary environments 
 C. Alippi, G. Boracchi, G. Ditzler, R. Polikar, and M. Roveri 
 Contemporary Issues in Systems, Science and Engineering, IEEE/Wiley Press Book Series, 2015. 
- Variable Selection to Improve Classification of Metagenomes 
 G. Ditzler, Y. Lan, J.-L. Bouchot, and G. Rosen 
 In: Nelson K. (eds) Encyclopedia of Metagenomics. Springer, New York, NY, 2014. 
- Advances in machine learning for processing and comparison of metagenomic data 
 J.-L. Bouchot, W. Trimble, G. Ditzler, Y. Lan, S. Essinger, and G. Rosen 
 In: Computational Systems Biology, 295-329, 2014 
Technical Reports
- Review of Automatic Speech Recognition Methodologies 
 G. Achour, O. Salunke, A. Payan, E. Harrison, C. Sahbani, G. Carannante, G. Ditzler, N. Bouaynaya 
 United States. Department of Transportation. Federal Aviation Administration. William J. Hughes Technical Center, DOT/FAA/TC-23/47, 2023. 
Patents
- Convolutional neural networks for pavement roughness assessment using calibration-free vehicle dynamics 
 Hongki Jo, Jong-hyun Jeong, Gregory Ditzler 
 US Patent App. 18/554,891, 2024